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Abstract 

We show that the structure of effective field theories replicates the geometry of multifractal sets, which 

are built from the fundamental concepts of scales and measures. It is found that the Standard Model (SM) 

Lagrangian is characterized by a dominant generalized dimension 2SMD  , while the same dimension of 

Einstein-Hilbert Lagrangian turns out to be 4GRD  . On the one hand, this result disfavors any trivial 

unification of SM and General Relativity (GR) based on field theory. On the other, it hints that the 

continuous spectrum of dimensions between SMD  and GRD  may naturally account for the existence of 

non-baryonic Dark Matter. 

1. Multifractals: a concise overview 

As it is known, the box-counting dimension defines the main scaling property of fractal 

structures and is a measure of their self-similarity. Multifractals are global mixtures of 

fractal structures, each characterized by its local box-counting dimension. Self-similarity 

of multifractals is accordingly defined in terms of a multifractal spectrum describing the 

overall distribution of dimensions. In the language of chaos and complexity theory, 

multifractal analysis is the study of invariant sets and is a powerful tool for the 

characterization of generic dynamical systems. 
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In the recursive construction of multifractal sets from 1,2...,i N  local scales 
ir  with 

probabilities
ip , the definition of the box-counting dimension leads to [  ]   
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Here, q  and ( )q  are two arbitrary exponents and the latter is typically presented as 

 ( ) (1 )
q

q q D     (1c) 

where qD   plays the role of a generalized dimension.  

The closure relationship (1a) may be extended to a continuous distribution of scales in 

D - dimensional space time. It reads 

 
( )( ) ( ) 1q q Dp x r x d x   (2) 

2. GR as topological analogue of SM  

Consider now the field makeup of the SM, formed by 16 independent “flavors”: two 

massive gauge bosons ( , )W Z , gluon ( )g , the Higgs scalar ( )H , neutrinos, charged 

leptons and quarks. The SM structure can be conveniently organized in the 4 4  matrix 
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The photon ( ) is absent from (3) as it is built from the underlying components of the 

electroweak sector, whereby 
3( , )W B    and 

3( , )B B W Z    [  ]. 

It was shown in [ ] that, near the electroweak scale 
EWM , the spectrum of particle 

masses 
im  entering the SM satisfies the “closure” relation 
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It is apparent that (3) shares the same formal structure with the metric tensor of GR, 

that is, 
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where there are only 10 independent entries under the standard assumption g = g . 

Starting from the GR definitions of interval and proper time leads to ( 1c  ) 
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subject to the constraint 
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Comparing (1), (4) and (6) reveals the following mapping 

1:
2

( , , 4i qGR p g g q D

   , ( ) 2q  ) 

(8) 

: ( 1, 0, ( ) 2i qSM p q D q    ) 

It is instructive to note that 0 2D   coincides with the fractal dimension of quantum 

mechanical paths in free space [  ], whereas 1 2 4D   recovers the four-dimensionality of 

geodesic paths in classical spacetime. 

A couple of conclusions may be drawn from (8):  

 GR may be viewed as topological analogue of the SM, defined by a half-unitary 

exponent q  and a dimension that is twice the SM dimension (that is, 1/2 02D D ). 

  The spectrum of particle mass scales ( i

EW

m
M

) and the four-vector of 

differential coordinates ( dx
d




) form the basis for the multifractal description of 

SM and GR, respectively. 

3. Multifractal formulation of effective field theories 

Effective Lagrangians may be described as sums of polynomial terms having the generic 

form  
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To simplify notation, we focus below on the basic unit entering the sum (8), namely on  

 11 12 22 11 1 12 1 2 22 2( , ) ( ) ( ) ( ) ( ) 1k l m n k l m n

uL c c c c z c z z c z                (9) 

in which 
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1,2,3c  are constants at given setting, for example, at a given energy scale. Therefore, 

 11 12 21 22 1k l m nr r r r    (11) 

where 

11 11 1 12 12 1, ,k k l lr c z r c z  21 12 2 22 22 2,m m n nr c z r c z   

If 1,2,3c  depend on the field content or their derivatives, (9) assumes the general form 

 31 2

11 11 11 12 12 21 12 21 22 22 22( ) ( , ) ( ) 1
qq qk l m nc r r c r r r r c r r    (12) 

where 1,2,3q  are non-vanishing exponents and 

 11 12 22 1c c c    (13) 
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4. GR as multifractal set 

Einstein-Hilbert action: 

 4S R g d x   (14) 

 
, ,( )R g R g       
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 , ,( ) 2 Gg g L g  

         (16) 
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5. SM as multifractal set 

SM Lagrangian  

 †1
( . .) ( ) ( ) ( )

4

a a i i i i i j

SM L L R R ij L R

V

L V V f i D f f i D f Y f Hf h c D H D H V H   

            (19) 

Here, the summation convention over repeated indices is assumed, with ( , ) 1,2,3i j 

extending over the three fermion families [ ]. The vector fields V corresponds to the 

three gauge groups of the SM, namely (1) , (2)Y LU SU  and (3)CSU , 

  1,2,3 1....8, ,a aV B W G   (20) 

to which we associate the field-strength tensors 
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 a a a b c

abcV V V g f V V           (21) 

and covariant derivative operators 

 a a

V V

V

D i g t V       (22) 

The last couple of terms denote the kinetic and potential contributions of the Higgs 

field, 

 2 † † 2( ) ( )HV H m H H H H    (23) 
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